

OceanDirect
Programming Manual
For product: OceanDirect

 MNL-1025 Rev A i

Table of Contents
Introduction ... 1

OceanDirect Spectrometers .. 2

Development Environments .. 2

Installation .. 3

Installing OceanDirect Software ... 3

Installing the Spectrometer Driver Software 9

Installation Troubleshooting ... 10

Basic Sequence of Operations 11

Create an Instance of the Object .. 11

Find All Spectrometers .. 12

Get Device ID .. 12

Open Spectrometer .. 12

Acquire a Spectrum ... 13

Correct for Detector Nonlinearity ... 14

Set Integration Time .. 15

Close Spectrometer ... 15

Advanced Features .. 16

Board Temperature .. 16

Analog In... 17

Analog Out .. 17

Back to Back .. 17

Continuous Strobe ... 18

Data Buffer ... 18

EEPROM .. 18

External Trigger Delay .. 18

IPv4 ... 18

Lamp Enable ... 19

LED Activity ... 19

Pixel Binning ... 19

Raw Bus Access ... 19

Scans to Average ... 20

Spectrum Processing .. 20

Thermoelectric Cooling ... 21

External Trigger Modes ... 21

Developing Your Application 24

Microsoft Visual Studio ... 24

LabVIEW ... 25

Visual Basic .. 26

Sample Programs .. 26

Appendix A - Data Structures 27

Appendix B - Error Codes 63

Appendix C - Improving Performance 64

Appendix D - FAQs ... 65

 MNL-1025 Rev A ii

Copyright © 2021 Ocean Insight
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from Ocean Insight.
This manual is sold as part of an order and subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out or otherwise circulated
without the prior consent of Ocean Insight, Inc. in any form of binding or cover other than that in which it is published.
Trademarks
All products and services herein are the trademarks, service marks, registered trademarks or registered service marks of their respective owners.
Limit of Liability
Every effort has been made to make this manual as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an
“as is” basis. Ocean Insight shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this manual.

 MNL-1025 Rev A

 1

Introduction
OceanDirect™ is a powerful Software Developer’s Kit (SDK) that allows you to easily write custom software solutions for your Ocean
Insight spectrometers. An Application Programming Interface (API) provides functions to communicate with and control Ocean
Insight spectrometers. With this product you can connect to spectrometers, set acquisition parameters such as integration time, and
acquire spectra. By integrating OceanDirect into your own software application, you have complete control over spectrometers and
devices.

This document discusses the capabilities of OceanDirect and provides high level information on the data structures. Detailed
information on the data structures is documented within the SDK. In addition, sample code using the SDK may be found on the
Ocean Insight website.

OceanDirect was developed in the C++ language and includes native libraries for Windows operating systems.

Operating System Support

• Windows: Windows 10 or higher

Language Support

You can develop OceanDirect-based applications in the following languages:

• C/C++/C#/Visual Basic (Microsoft Visual Studio environment)

• C (standard interface environment)

• LabVIEW (Windows only, Version 8 or greater)

• MATLAB

• Python (version 3 or later)

 MNL-1025 Rev A

 2

OceanDirect Spectrometers

OceanDirect is spectrometer-independent; the same function calls work for all spectrometers.

The following Ocean Insight spectrometers are supported by OceanDirect:

• Flame

• HR4000

• HR4Pro

• NIRQuest

• NIRQuest+

• QE Pro

• STS

• Ocean HDX

• Ocean FX

Development Environments

Windows Development
For purposes of programming in Windows, you can access OceanDirect functionality via two DLL files:

• OceanDirect.dll contains the functions that allow you to control all spectrometer settings and acquire spectra. For example,
you can set the integration time, scans to average, enable electric dark correction, etc.

• NetOceanDirect.dll is a similar DLL but specifically for development using the Microsoft .NET Framework.

LabVIEW Development
For LabVIEW developers, OceanDirect provides a set of VI files that expose its functionality in a fashion that is natural to the
LabVIEW development environment. Behind the scenes, these VIs invoke the .NET methods contained in the DLL files that comprise
OceanDirect.

MATLAB Development
For MATLAB developers, OceanDirect provides an ‘m’ file script that exposes its functionality in a fashion that is natural to the
MATLAB development environment. Behind the scenes, these scripts invoke the .NET methods contained in the DLL files that
comprise OceanDirect.

 MNL-1025 Rev A

 3

Installation
Upon purchasing the software, you will be provided a link for downloading the software and an associated license key. Click on the
link to access the installation file. If you did not receive the link, or have misplaced it, request a replacement email via the technical
support request form.

When the installation process is finished, the following subdirectories will be created beneath the OceanDirect “home” directory:

Once you have installed the software, you’ll want to verify your installation, look at the samples located at the at the OceanDirect
product page at OceanInsight.com to get an idea of how the objects and methods for OceanDirect are organized and then run a
sample program.

Installing OceanDirect Software

Simply download the file and double-click it in Windows Explorer to begin the installation procedure. The installer will guide you
through the install process.

Subdirectory Contents

doc Documentation relating to OceanDirect and its API

include Header files for use with C/C++ application development

lib Libraries for client applications

NOTE

The computer on which you are installing the software must be connected to the Internet to validate the license key.

https://www.oceaninsight.com/support/faqs/supportrma-request-form/
https://www.oceaninsight.com/support/faqs/supportrma-request-form/
https://www.oceaninsight.com/products/software/drivers/oceandirect/
https://www.oceaninsight.com/products/software/drivers/oceandirect/
file:///C:/Users/heather.lovelady/OneDrive%20-%20Ocean%20Optics%20Inc/Branding/User%20Manuals/OceanDirect/OceanInsight.com

 MNL-1025 Rev A

 4

1. Start your Internet browser.

2. Navigate to the link provided to you and select the OceanDirect software (e.g., OceanDirect-x.xx-windows-64-installer.exe).

3. Save the software installer to the desired location.

4. Double-click on the file. The installer wizard guides you through the installation process. The default installation directory is
c:\Program Files\Ocean Insight\OceanDirect SDK.

a. Allow the installation to begin by clicking “Yes.”

b. Choose your preferred language and click “OK.”

 MNL-1025 Rev A

 5

c. The Setup window is displayed. Click “Next” to continue.

d. Review the License Agreement and select the “I accept the agreement”
button, then click “Next.”

 MNL-1025 Rev A

 6

e. Choose the directory in which the software will be installed.

f. You are now ready to being the installation. Click “Next” to continue.

 MNL-1025 Rev A

 7

g. A progress bar is displayed showing the status of the installation.

h. You will be prompted to enter your license key. Type the license number
in and click on “Activate”.

i. Once the license key has been verified, click on the “Exit” button.

 MNL-1025 Rev A

 8

j. Upon completion of license verification, you have the option of
reviewing the Readme file. Click “Finish” to conclude.

k. If chosen, the Readme file is displayed. Click “OK” to close the window.

 MNL-1025 Rev A

 9

Installing the Spectrometer Driver Software

Each spectrometer has unique steps for installing its drivers. Refer to your spectrometer’s installation guide for details on how to
install the driver software.

NOTE

If you do not enter the license key during installation, you will not be able to successfully use the program. An error code will be
returned for all function calls indicating that the license is not active.

To activate the license at a later time, use the license activator tool “OceanLicenseActivator.exe” located in the directory in
which you installed the software. Run this tool and it will prompt you for the license key that will activate the software.

NOTE

Do not plug your spectrometer in until after you have finished installing the OceanDirect software on your system.

 MNL-1025 Rev A

 10

Installation Troubleshooting

Problem Possible Cause(s) Suggested Solution(s)

You have installed the latest version of OceanDirect

while your computer is plugged in to your

spectrometer, but your application does not see it.

The old driver (ezusb.sys) for your

spectrometer must be uninstalled.
Uninstall the old spectrometer driver.

You have installed the latest version of OceanDirect

and plugged into your spectrometer, but your

application does not see it.

The USB device needs to be enumerated. Unplug the USB cable. Wait 5

seconds. Plug the USB cable back in.

 MNL-1025 Rev A

 11

Basic Sequence of Operations
This chapter describes the typical sequence of operations that the application must perform to control a spectrometer and acquire
spectra. The functions described here are common to all Ocean Insight spectrometers.

This chapter provides generic syntax for C# method calls, created in the .net development environment. Refer to the sample code at
the OceanDirect product page at OceanInsight.com for specific examples for additional languages.

There are also a number of optional features offered by some, but not all, spectrometers. Refer to Advanced Features for more
information on these.

Further in the document, the Developing Your Application section discusses how to set up your development environment prior to
creating your application.

Create an Instance of the Object

Before you can control your spectrometer, you must create an instance of the object. This is your gateway into all of the capabilities
of the spectrometer.

After importing the library, simply declare an instance for different languages. In the example below, we use “ocean” as the name of
the instantiated object. The example in the function descriptions in this section are shown are in C#. Refer to the sample code on the
product page for additional languages.

var ocean = OceanDirect.getInstance();

NOTE

Your application must create only ONE instance of the object. This object is then shared by all spectrometers under the control
of your application. All threads created by your application must then share a reference to the same instance of the object.
Furthermore, there may only be ONE application (EXE) running on your computer that creates an object and controls
spectrometers. All interaction with all Ocean Insight spectrometers attached to your computer must be performed within this
single executable/application.

https://www.oceaninsight.com/products/software/drivers/oceandirect/
file:///C:/Data/Junonia%20Tech/c_Ocean%20Insight/OceanDirect/OceanInsight.com

 MNL-1025 Rev A

 12

Find All Spectrometers

Next, you want to discover any spectrometers that are connected, either by USB or Ethernet, by using the findDevices method. The
findDevices()method returns a tracked handle to a list of Devices objects containing metadata for all detected/known devices on
USB and/or Ethernet.

Device Information returned includes: ID, name, if the device is in use, bus type, port number, IP address, and spectrum length.

Devices[] devs = ocean.findDevices();
if (0 == devs.Length)
{
Console.WriteLine("Nothing attached - press any key to exit!");
return;
}

Get Device ID

Each device found with findDevices() has a device ID, a number which is used in the function calls to address a given
spectrometer, particularly if multiple spectrometers are attached. The default device ID returned if one spectrometer is attached is 2.
Note that the device array is 0 based, so the first value in the array is at position 0.

int deviceID = 0;
int firstDevice = 0;
deviceID = devs[firstDevice].Id; // Get device ID of the device

Open Spectrometer

A spectrometer may be opened with the ocean.openDevice(int deviceID, int% errorCode), which then allows operations to be
performed on it. After being opened, the spectrometer should not be opened again until it is first closed using ocean.closeDevice (int
deviceID, int% errorCode). The errorCode can be examined after the function is called. It will remain 0 if the function succeeds
as the comment below indicates. In general, the errorCode can be tested after every function call.

int errorCode = 0; // This variable can be tested after the function

 MNL-1025 Rev A

 13

Acquire a Spectrum

Now you are ready to acquire a spectrum. A spectrum is simply a one-dimensional array of pixel values, stored as “doubles”. The
number of elements in this array varies for each spectrometer.

The function call is getSpectrum(int deviceID, int% errorCode).

double[] spectrum = ocean.getSpectrum(deviceId, ref errorCode);

When you call the getSpectrum()method, the spectrometer will return the next available spectrum to your application, assuming the
spectrometer is in its default normal mode. The amount of time for the function to return may vary based on when the spectrometer
completes the acquisition of a spectrum. See FAQ: Why doesn’t getSpectrum() return when I think it should? for a discussion of the
timing of the getSpectrum() method.

Next, you need to call the function to get the wavelengths that correspond to the pixels in the spectrum.

double[] allWaveLengths = ocean.getWavelengths(deviceID,
ref errorCode);

The two arrays returned from getSpectrum() and getWavelengths() can be
imported to an external program (Microsoft Excel, for instance) and plotted
with wavelengths on the x-axis and spectrum on the y-axis, to visualize the
spectrum observed by the spectrometer.

There are a number of convenient calls to get one or more indices within the

spectrum one-dimensional array given any particular wavelength(s). For

example, asking for the index at 340 nm will give the closest approximation

based on the spectrometer used.

double wl = 0;
double approximateWavlength = 340;
var p_index = ocean.getIndexAtWavelength(deviceId, ref errorCode, ref wl, approximateWavlength);

Now the variable p_index can be used to find the pixel value from the array given by getSpectrum() call.

In the case where you want many indexes that are not contiguous you can use:

double[] waves = { 389, 420, 600 };

-20000

0

20000

40000

60000

80000

0 200 400 600 800 1000 1200

C
o

u
n

ts

Wavelength (nm)

Example Spectrum

 MNL-1025 Rev A

 14

 int wvlen = waves.Length;

 int[] inx = ocean.getIndicesAtAnyWavelength(deviceId, ref errorCode, ref waves, wvlen);
 for (int i = 0; i < wvlen; i++)
 {
 Console.Write("Wavelength Index at: {0} == ", inx[i]);
 Console.WriteLine("Wavelength Value is: {0}\n", waves[i]);
 }

If a contiguous range is desired, use the following call:

double lo = 400;
 double hi = 413;
 Console.WriteLine("Wavelengths from approx {0} nm to {1} nm.", lo, hi);
 int[] inxR = ocean.getIndicesAtWavelengthRange(deviceId, ref errorCode, ref waves, ref
rangeLength, lo, hi);
 for (int i = 0; i < inxR.length; i++)
 {
 Console.Write("Range Index at: {0} == ", inxR[i]);
 Console.WriteLine("Range Value is: {0}\n", waves[i]);
 }

Correct for Detector Nonlinearity

All Ocean Insight spectrometers are calibrated at the factory to maximize accuracy. One of the calibrations performed is to correct
for detector nonlinearity.

This calibration consists of eight numbers used as the coefficients of a 7th order polynomial that adjusts for the fact that the CCD
detectors don’t respond to stimuli photons uniformly as more electrons are drained from the well. In other words, the efficiency of
the CCD detectors may be 30% when the well is half full, but may be only 20% when the well is completely drained of electrons.

By “efficiency” we mean the probability that an incoming photon will drain an electron from the CCD well; 100% efficiency means
every incoming photon will drain one electron, while 50% efficiency means an incoming photon has only a 50% chance of causing an
electron to drain.

 MNL-1025 Rev A

 15

Nonlinearity calibration is made by averaging all pixels of the CCD array. Thus, we are assuming that all pixels respond about the
same.

To ensure that the nonlinearity correction is applied, use the following call:

bool nonLinearityOn = true;
ocean.applyNonLinearityCorrection(deviceID, ref errorCode, nonLinearityOn);

Testing the state of the nonlinearity correction can be done by calling

bool readNonLinearityState = ocean.getNonLinearityCorrectionUsage(deviceID, ref errorCode);

Set Integration Time

Integration time is simply the length of time during which we allow light to pass into the spectrometer’s detector. In low-light level
situations you may want to lengthen this period to obtain a meaningful spectrum. In high-light level situations you may want to
shorten this period to avoid saturation. Saturation occurs when the one or more CCD pixels or wells have been completely drained (or
filled on some detector models). When this occurs, additional photons entering the “well” have no effect, and the spectrum becomes
increasingly distorted. If you plot a saturated spectrum on a graph, it will appear clipped at the peaks.

Integration time is specified in units of microseconds. See the documentation for your spectrometer to determine the allowable
minimum and maximum integration times it will support.

To set integration time to 200 msec (200000 microseconds):

uint newIntegrationTime = 200000;
ocean.setIntegrationTimeMicros(deviceId, ref errorCode, newIntegrationTime);

To retrieve the integration time:

var itime = ocean.getIntegrationTimeMicros(deviceId, ref errorCode);

Close Spectrometer

When your application is ready to terminate, call the closeDevice (int deviceID, int% errorCode) method.

ocean.closeDevice(deviceID, ref errorCode);

 MNL-1025 Rev A

 16

Advanced Features
All spectrometers support basic functions including setting the integration time and acquiring a spectrum. Some spectrometer
models offer additional, advanced features.

A characteristic of these features is that the methods or functions you must call to use them are not provided directly in the
NetOceanDirect class. Instead, for each feature, NetOceanDirect provides a pair of related methods you can call to determine if a
feature is supported by your spectrometer and methods needed to use or control that feature.

Thus, in the OceanDirect, you will see a number of methods whose names look something like isFeatureEnabled(xxx) where “xxx”
is the name of the feature. These methods return a Boolean true/false to indicate whether that spectrometer supports that feature. It
is recommended to call the isFeatureEnabled(xxx) method before attempting to use a feature. If you attempt to use a feature that
is not supported by your spectrometer, nothing will happen. See the examples in this section for the correct syntax to call these
functions.

After calling the isFeatureEnabled(xxx) method (and assuming it returns a “true” value, errorCode=0), the second step is to call
the methods unique to that feature. If the errorCode returned is 5 or 24, the feature is not available on the device.

The following example shows the syntax for testing the availability of a feature (Board Temperature) and calling a function that is a
member of that feature.

Board Temperature

Some spectrometers contain one or more temperature sensor chips mounted on the printed circuit board (PCB). Your application
can read out this temperature value, in degrees Celsius, by means of this feature. Do not confuse this feature with the Thermoelectric
Cooling feature, described later in this chapter. Please refer to the spectrometer’s documentation to determine which component
temperature is returned - e.g., detector temperature or PCB temperature by each sensor.

First check the isFeatureEnabled value.

bool temperatureInfo = ocean.isFeatureEnabled(deviceID, OceanDirect.FeatureID.FEATURE_ID_TEMPERATURE,
ref errorCode);

This will return a true or false.

Then find out how many temperature sensors are available on the spectrometer.

 MNL-1025 Rev A

 17

int numberOfTempSensors = ocean.AdvancedFeatures().TemperatureController().getCount(deviceID, ref
errorCode);

Finally, read the temperature of one of the sensors. The sensors are indexed starting with zero – this example gets the temperature
of the 0th sensor,

int indexZero = 0;

double currentTemperature = ocean.AdvancedFeatures().TemperatureController().getTemperature(deviceID,
ref errorCode, indexZero);

Below is a list of the advanced features, but be sure to see the documentation for your spectrometer to determine if it supports that
specific feature.

Analog In

AnalogIn provides access to information about the device's input pin voltage settings.

To check if AnalogIn is available on your spectrometer, use feature ID: ANALOG_IN.

Analog Out

AnalogOut provides access to information about the device's output pin voltage settings.

To check if AnalogOut is available on your spectrometer, use feature ID: ANALOG_OUT.

Back to Back

BacktoBack provides access to the device's back-to-back scan buffering functionality.

To check if BacktoBack is available on your spectrometer, use feature ID: BACK_TO_BACK.

 MNL-1025 Rev A

 18

Continuous Strobe

ContinuousStrobe provides access to the strobe characteristics (e.g., minimum, maximum, width, and period).

To check if ContinuousStrobe is available on your spectrometer, use feature ID: CONTINUOUS_STROBE.

Data Buffer

 DataBuffer provides access to onboard memory, allowing you to retrieve stored spectra.

To check if DataBuffer is available on your spectrometer, use feature ID: DATA_BUFFER.

EEPROM

The EEPROM function provides access to EEPROM storage for wavelength calibration and linearity correction coefficients.

To check if EEPROM is available on your spectrometer, use feature ID: EEPROM.

External Trigger Delay

ExternalTriggerDelay provides access to the device’s trigger mode parameters, allowing a delay between the trigger and the reading
of the spectra.

To check if External Trigger Delay is available on your spectrometer, use feature ID: ACQUISITION_DELAY.

IPv4

This parameter provides access to the device’s IPv4 address functionality, allowing the DHCP client to be turned on or off, and to
read, add, or delete IP addresses,

To check if IPv4 is available on your spectrometer, use feature ID: IPV4_ADDRESS.

 MNL-1025 Rev A

 19

Lamp Enable

This parameter controls the shutter on a light source. These light sources attach directly to an electrical connector on your
spectrometer. The lamp will turn on when set to true and turn off when set to false.

To check if Lamp Enable is available on your spectrometer, use feature ID: LIGHT_SOURCE.

LED Activity

Some spectrometers have indicator lights to show power and data transfer status. This feature allows you to access the state of the
LEDs.

To check if LED Activity is available on your spectrometer, use feature ID: LED_ACTIVITY.

Pixel Binning

Pixel binning combines the charge collected by several adjacent pixels on the detector, which reduces noise and improves the signal-
to-noise ratio.

To check if Pixel Binning is available on your spectrometer, use feature ID: PIXEL_BINNING.

Raw Bus Access

Raw Bus Access allows you to read and write raw bus data.

To check if Raw Bus Access is available on your spectrometer, use feature ID: RAW_BUS_ACCESS.

 MNL-1025 Rev A

 20

Scans to Average

Scans to average is another method used to perform noise-reduction (smoothing) on the spectra returned by a spectrometer. With
this technique, multiple sequential spectra are averaged to produce a single averaged spectrum. The algorithm uses corresponding
pixels from each spectrum when computing the average for a given pixel value. For example, if Scans to Average is set to 5, the
pixel[0] values from each of five consecutive scans are added together, and then divided by 5. The resulting value will be reported in
pixel[0] of the spectrum returned to the user. This procedure is repeated for each pixel in the spectrum.

Use this call to set the number of scans to average equal to 5 and check the number of spectra averaged:

ushort newScansToAverage = 5;
ocean.AdvancedFeatures().SpectrumProcessingController().setScansToAverage(deviceID, ref errorCode,
newScansToAverage);
ushort readScansToAverage =
ocean.AdvancedFeatures().SpectrumProcessingController().getScansToAverage(deviceID, ref errorCode);

Spectrum Processing

SpectrumProcessing provides access to on-device averaging, filtering, and triggering functionality.

To check if Spectrum Processing is available on your spectrometer, use feature ID: SPECTRUM_PROCESSING.

NOTE

In the following function call, if you specify a value of 1 for the setScansToAverage() argument, no smoothing will be
performed. Each spectrum will be reported as is, without any averaging.

NOTE

Triggering functionality will move to SpectrometerProcess in a future release of OceanDirect.

 MNL-1025 Rev A

 21

Thermoelectric Cooling

Some spectrometers such as the QE Pro have a thermoelectrically cooled (TEC) CCD that can be controlled by the software.

Be careful to observe the allowable temperature range supported by your spectrometer’s TE cooler. For example, the TE cooler of the
QE Pro is capable of dropping the temperature of the CCD by 30-43 degrees Celsius below the ambient temperature. Thus, if the
ambient temperature happens to be 25 degrees Celsius, the range of values you may pass in to the setDetectorSetPointCelsius()
method will be +5 to -18 degrees Celsius. In this example, if you (erroneously) attempt to specify a value of -3 degrees Celsius, the TE
cooler will not function properly and the temperature of the CCD will not approach -3 degrees Celsius.

To check if Thermoelectric Cooling is available on your spectrometer, use feature ID: THERMOELECTRIC.

External Trigger Modes

The trigger mode setting of your spectrometer gives you more precise control over the timing of a spectrum capture.

Not all spectrometers support all trigger modes, so be sure to see the documentation for your particular spectrometer. You set the
trigger mode of your spectrometer by using the advanced feature SpectrumProcess and specifying an integer corresponding to the
desired mode as described below.

ocean.AdvancedFeatures().SpectrumProcessingController().setTriggerMode(deviceID, ref errorCode, mode)

Mode 0: Normal Mode
Sometimes called “free running” mode, this is the default mode for all spectrometers. In this mode, the spectrometer is continuously
acquiring new spectra, using default power-up settings for integration time, etc.

The integration time is controlled by calls to the setIntegrationTimeMicros() method.

When you call the getSpectrum() method, it returns the next available spectrum, subject to delay due to the length of integration
time, number of scans to average, and possibly a stability scan. It is also possible that getSpectrum() returns almost immediately,
even if you specified a lengthy integration period, because the spectrometer is continuously acquiring spectra. See Appendix A: FAQs
for more information.

The getSpectrum() method will block (i.e., not return) until the spectrometer finishes acquiring the current spectrum.

 MNL-1025 Rev A

 22

Mode 1: External Software Trigger Mode
In this mode, the trigger signal acts like an “enable.” As long as the input trigger signal pin on your spectrometer is held electrically
high, spectra will be continuously acquired. When the signal goes low, the spectrometer no longer acquires spectra, and
getSpectrum() will remain blocked (i.e., not return) until the signal goes high again.

This mode is similar to Mode 0 (Normal mode) in that as long as the trigger signal remains high, the spectrometer is continuously
acquiring new spectra, irrespective of when you call getSpectrum(). In this situation, getSpectrum() simply returns the next
available spectrum.

The integration time is controlled by calls to the spectrometerSetIntegrationTimeMicros()method.

Mode 2: External Synchronization Trigger Mode
In this mode, spectra acquisition is initiated by an external synchronizing TTL trigger signal. The purpose of this mode is to allow
multiple spectrometers to be synchronized in terms of the start of their acquisition period, and the duration of the integration period.
The integration time is determined based on an average of the length of time between the input trigger signal pulses. See your
spectrometer’s documentation for the allowed frequency range for this input signal.

Mode 3: Hardware Trigger Mode
In this mode, the spectrometer does not begin to acquire a new spectrum until the rising edge of an external TTL input signal. When
you call getSpectrum(), this method blocks (i.e., does not return to the caller) until the trigger signal occurs and the spectrum has
been acquired.

The integration time is controlled by calling the spectrometerSetIntegrationTimeMicros()method.

NOTE

Once you put the spectrometer in this mode, it is impossible to programmatically return to normal Hardware Trigger mode. You
must power-cycle the spectrometer by unplugging it from your computer.

 MNL-1025 Rev A

 23

Mode 4: Single-Shot Trigger Mode (Quasi Realtime Mode)
This mode is designed to provide more precise software control over when a spectrum acquisition is initiated. This is especially
valuable when you need to use very long integration periods, but also want precise control over when the acquisition period begins.

This mode is only available on certain spectrometers.

In this mode, the spectrometer automatically sets its integration time to a very short integration period and then begins to
continuously acquire spectra using this minimal integration time. When spectrometerSetIntegrationTimeMicros() is called to
specify the desired integration period, this value is stored in the spectrometer, but the spectrometer continues to acquire spectra
using the minimal integration period.

When getSpectrum() is called, the spectrometer completes the current acquisition (which should happen very quickly since the
integration time is so short). The spectrometer then sets its integration time to the value requested and initiates a new spectrum
acquisition. When this acquisition completes, getSpectrum() returns the new spectrum. The spectrometer once again reverts to the
minimal integration period and continues to acquire spectra in the background.

 MNL-1025 Rev A

 24

Developing Your Application
You may develop your application in any environment of your choosing. We will focus on Microsoft Visual Studio examples due to its
availability and cross-platform capabilities.

Microsoft Visual Studio

To use the .NET assembly interface you must add a reference to the assembly as follows:

1. In your application, click on the Project menu item, and then choose Add Reference.

2. Click on the Browse tab.

3. Navigate to the OCEANDIRECT_HOME directory.

4. Highlight NetOceanDirect.dll and click OK.

Creating a New C# Project That Uses the .NET Interface to OceanDirect
1. Create new project of type C# “Windows Console”.

2. Add a reference to netOceanDirect.dll:

1. In Solution Explorer, right-click on References and choose Add Reference…

2. Click the Browse tab.
3. Navigate to the OCEANDIRECT_HOME folder.
4. Highlight NetOceanDirect.dll and click OK.

Deploying Your C# Application
Normally, all that is needed to deploy your C# application is the EXE file containing the application itself. And you will also need to
deploy the appropriate OceanDirect “redistributable” installer.

 MNL-1025 Rev A

 25

However, if your C# application uses the OceanDirect .NET assembly interface, you must also ensure that a copy of
NETOceanDirect.dll is placed in the same folder as your application’s EXE file. You can obtain the DLL file from the
OCEANDIRECT_HOME directory.

LabVIEW

OceanDirect provides a .NET 4.0 interface. We recommend that all LabVIEW applications use the .NET 4.0 interface when accessing
OceanDirect functions.

LabVIEW is able to show all the methods in a class as well as each method’s inputs and outputs with default named variables. This
graphical representation clearly documents the .NET interface within the LabVIEW environment.

The following steps must be performed when starting a new LabVIEW projects:

1. The first step is to place an “Invoke Node (.NET)” on the Block Diagram panel. Do this in the Functions window by selecting

Connectivity -> .NET -> Invoke Node (.NET) and dragging it to the panel. Right-click the node and then choose Select Class ->
.NET -> Browse. Navigate to the NetOceanDirect.dll. The default location for the DLL is C:\Program Files\Ocean
Insight\OceanDirect SDK\lib\.

2. In the Select Object From Assembly window, select the OceanDirect object on the panel, click OK. This updates the node on
the block diagram to “OceanDirect”. Right-click on the node and choose Select Method. A list of all available methods is
displayed. Select [S]getInstance. This returns a .NET object, which will be your primary OceanDirect object that you call all
further methods from.

3. Create another Invoke Node of class OceanDirect and select the method findDevices. This method returns an array of devices
that OceanDirect knows how to communicate with. You must subset the array and call the Property Node (ID) to find each
device’s assigned deviceID. The deviceID will be used for all function calls that perform an action on a specific device.

4. You must then call openDevice from the OceanDirect .NET object that was returned earlier from getInstance. The openDevice
method requires you to pass in the deviceID and a number as a reference (LabVIEW handles the reference part
automatically). It will return an errorCode, which you should verify is 0 (0=no error) before performing your next function.

5. Once the device is open you can call any of the standard methods found in the returned instance, e.g., getWavelength,

getSpectrum,setIntegrationTimeMicro, etc.

 MNL-1025 Rev A

 26

Visual Basic

Using the .NET Interface to OceanDirect

To use the .NET assembly interface to OceanDirect in your Visual Basic application, you must add a reference to your assembly as
follows:

1. Click on the Project menu item and choose Add Reference.
2. Click on the Browse tab.
3. Navigate to the OCEANDIRECT_HOME directory.
4. Highlight the netOceanDirect.dll and click OK.

Sample Programs

A collection of sample programs for OceanDirect demonstrating basic functionality may be downloaded from the OceanDirect
product page at OceanInsight.com.

https://www.oceaninsight.com/products/software/drivers/oceandirect/
https://www.oceaninsight.com/products/software/drivers/oceandirect/
file:///C:/Data/Junonia%20Tech/c_Ocean%20Insight/OceanDirect/OceanInsight.com

 MNL-1025 Rev A

 27

Appendix A - Data Structures
The OceanDirect API is the collection of objects and methods your application uses to control spectrometers and acquire data from
them.

Depending on your development environment, you will use OcearDirect.dll or netOceanDirect.dll (used in the Visual Studio
environment). Public member functions for each class of the NetOceanDirect data structures are shown below. OceanDirect has
similar names for the public functions.

The table below is a quick reference showing each class and the public member functions. The items in the table link to a description
of the functions in this document. A more detailed description of the functions and the associated parameters may be found in the
reference manuals “OceanDirect.rtf” located at “c:\Program Files\Ocean Insight\OceanDirect
SDK\Doc\rtf\OceanDirectWrapper_User_Manual.rtf”, and “NetOceanDirect User Manual.rtf” located at “c:\Program Files\Ocean
Insight\OceanDirect SDK\Doc\net\rtf\ NetOceanDirect_User_Manual.rtf”.

HTML versions of the reference manual may be found at “c:\Program Files\Ocean Insight\OceanDirect SDK\Doc\html\index.html\”
and “c:\Program Files\Ocean Insight\OceanDirect SDK\Doc\net\index.html\”.

Public Functions

General Class OceanDirect Class NetOceanDirect Class C# Public Functions

AcquireDelay oceandirect::api::AcquireDelayAPI NetOceanDirect::AcquireDelay getDelayIncrementMicroseconds

 getDelayMaximumMicroseconds

 getDelayMicroseconds

 getDelayMinimumMicroseconds

 setDelayMicroseconds

Advanced oceandirect::api::Advance NetOceanDirect::Advanced AcquireDelayController

 AnalogInController

 AnalogOutController

 MNL-1025 Rev A

 28

General Class OceanDirect Class NetOceanDirect Class C# Public Functions

 BackToBackController

 ContinuousStrobeController

 DataBufferController

 DeviceRevisionController

 EepromController

 GpioController

 Ipv4Controller

 IrradianceController

 LampController

 LedActivityController

 LightSourceController

 NonLinearityController

 OpticalBenchController

 RawBusController

 SingleStrobeController

 SpectrumProcessingController

 TECController

 TemperatureController

Analogin oceandirect::api::AnalogInAPI NetOceanDirect::AnalogIn configureAltPin

 getMaximumInputVoltageDC

 getMinimumInputVoltageDC

 getNumberOfVoltageDCInputs

 getVoltageDCInputVolts

 MNL-1025 Rev A

 29

General Class OceanDirect Class NetOceanDirect Class C# Public Functions

AnalogOut oceandirect::api::AnalogOutAPI NetOceanDirect::AnalogOut configureAltPin

 getMaximumOutputVoltageDC

 getMinimumOutputVoltageDC

 getNumberOfVoltageDCOutputs

 setVoltageDCOutVolts

BackToBack oceandirect::api::BackToBackAPI NetOceanDirect::BackToBack getNumberOfBackToBackScans

 setNumberOfBackToBackScans

ContinuousStrobe oceandirect::api::ContinuousStrobeAPI NetOceanDirect::ContinuousStrobe getContinuousStrobeEnable

 getContinuousStrobePeriodIncrementMicroseconds

 getContinuousStrobePeriodMaximumMicroseconds

 getContinuousStrobePeriodMicroseconds

 getContinuousStrobePeriodMinimumMicroseconds

 setContinuousStrobeEnable

 setContinuousStrobePeriodMicroseconds

 setContinuousStrobeWidthMicroseconds

DataBuffer oceandirect::api::DataBufferAPI NetOceanDirect::DataBuffer clear

 getBufferCapacity

 getBufferCapacityMaximum

 getBufferCapacityMinimum

 getBufferEnable

 MNL-1025 Rev A

 30

General Class OceanDirect Class NetOceanDirect Class C# Public Functions

 getNumberOfElements

 setBufferCapacity

 setBufferEnable

DeviceRevision oceandirect::api::DeviceRevisionAPI NetOceanDirect::DeviceRevision getRevisionFirmware

 getRevisionHardware

Eeprom oceandirect::api::EepromAPI NetOceanDirect::Eeprom readSlot

Gpio oceandirect::api::GpioAPI NetOceanDirect::Gpio getNumberOfGPIO

 getOutputEnable (specific pin)

 getOutputEnable (all pins)

 getValue(specific pin)

 getValue(all pins)

 setOutputEnable (specific pin)

 setOutputEnable (all pins)

 setValue (specific pin)

 setValue (all pins)

Ipv4Address oceandirect::Ipv4AddressAPI NetOceanDirect::Ipv4Address isDHCPEnabled

 setDHCPEnable

 getNumberOffIpAddresses

 readIpAddress

 addStaticIpAddress

 MNL-1025 Rev A

 31

General Class OceanDirect Class NetOceanDirect Class C# Public Functions

 deleteStaticIpAddress

IrradCalibrate oceandirect::api::IrradCalibrAPI NetOceanDirect::IrradCalibrate read

 readCalibrationDataSize

 readCollectionArea

 write

 writeCollectionArea

Lamp oceandirect::api::LampAPI NetOceanDirect::Lamp setEnable

LedActivity oceandirect::api::LedActivityAPI NetOceanDirect::LedActivity isEnabled

 setEnable

LightSource oceandirect::api::LightSourceAPI NetOceanDirect::LightSource getCount

 getIntensity

 hasEnable

 hasVariableIntensity

 isEnabled

 setEnable

 setIntensity

 setLampEnable

NonLinearity oceandirect::api::NonLinearityAPI NetOceanDirect::NonLinearity getCoeffs

 MNL-1025 Rev A

 32

General Class OceanDirect Class NetOceanDirect Class C# Public Functions

OceanDirect oceandirect::api::OceanDirectAPI NetOceanDirect::OceanDirect AdvancedFeatures

 applyElectricDarkCorrection

 applyNonLinearityCorrection

 closeDevice

 findDevices

 getApiVersion

 getDeviceModel

 getCurrentDevicesConnected

 getEDPCount

 getEDPIndices

 getElectricDarkCorrectionUsage

 getIndexAtWavelength

 getIndicesAtAnyWavelength

 getIndicesAtWavelengthRange

 getIntegrationTimeMicros

 getMaximumIntegrationTime

 getMaximumIntensity

 getMinimumIntegrationTime

 getNonLinearityCorrectionUsage

 getNumberOfPixels

 getRawSpectrumWithMetadata

 getSerialNumber

 getSpectrum

 getWavelength

 MNL-1025 Rev A

 33

General Class OceanDirect Class NetOceanDirect Class C# Public Functions

 getWavelengths

 isFeatureEnabled

 openDevice

 setIntegrationTimeMicros

OpticalBench oceandirect::api::OpticalBenchAPI NetOceanDirect::OpticalBench getSlitWidthMicrons

 getSerialNumber

 getCoating

 getArrayWavelength

 getLensInstalled

 getFilter

 getGrating

 getSerialNumber

RawBus oceandirect::api::RawBusAPI NetOceanDirect::RawBus accessUsbRead

 accessEthRead

 accessEthWrite

 accessUsbWrite

 getStringDescriptor

SingleStrobe oceandirect::api::SingleStrobeAPI NetOceanDirect::SingleStrobe getStrobeDelay

 getStrobeEnable

 getStrobeIncrementDelay

 getStrobeIncrementWidth

 MNL-1025 Rev A

 34

General Class OceanDirect Class NetOceanDirect Class C# Public Functions

 getStrobeMaximumCycle

 getStrobeMaximumDelay

 getStrobeMaximumWidth

 getStrobeMinimumDelay

 getStrobeMinimumWidth

 getStrobeWidth

 setStrobeDelay

 setStrobeEnable

 setStrobeWidth

SpectrumProcess oceandirect::api::SpectrumProcessAPI NetOceanDirect::SpectrumProcess getBoxcarWidth

 getScansToAverage

 setBoxcarWidth

 setScansToAverage

 setTriggerMode

SpectrumWithMetadata NetOceanDirect::SpectrumWithMetadata SpectrumWithMetadata

Temperature oceandirect::api::TemperatureAPI NetOceanDirect::Temperature getCount

 getTemperature

ThermoElectric oceandirect::api::ThermoElectricAPI NetOceanDirect::ThermoElectric getEnable

 getFanEnable

 getSetpoint

 MNL-1025 Rev A

 35

General Class OceanDirect Class NetOceanDirect Class C# Public Functions

 getStable

 readTemperatureDegreesC

 setEnable

 setFanEnable

 setTemperatureSetpointDegreesC

AcquireDelay

void setDelayMicroseconds (long deviceID, int% errorCode, unsigned long delay_usec)

• Sets acquisition delay (time between when device receives trigger signal and when integration begins) for the given device.
Functions such as getDelayMaximumMicroseconds() can be used to determine valid values for this setting.

unsigned long getDelayMicroseconds (long deviceID, int% errorCode)

• Retrieves the given device's current acquisition delay setting (time between when device receives trigger signal and when
integration begins).

unsigned long getDelayIncrementMicroseconds (long deviceID, int% errorCode)

• Retrieves the given device's acquisition delay resolution, which is the minimum delta between possible consecutive
acquisition delay settings. The device supports a range of acquisition delay settings [min, max] with intermediate values

spaced apart by this quantity, which forms the following range in MATLAB notation: getDelayMinimumMicroseconds() :
getDelayIncrementMicroseconds() : getDelayMaximumMicroseconds()

unsigned long getDelayMaximumMicroseconds (long deviceID, int% errorCode)

• Retrieves the given device's maximum possible acquisition delay setting.

 MNL-1025 Rev A

 36

unsigned long getDelayMinimumMicroseconds (long deviceID, int% errorCode)

• Retrieves the given device's minimum possible acquisition delay setting.

Advanced

DeviceRevision DeviceRevisionController ()

• Returns a tracked handle to an instance of the SerialNumber feature, which provides access to a device's serial number.

ContinuousStrobe ContinuousStrobeController ()

• Returns a tracked handle to an instance of the continuous strobe controller, which provides access to the device's continuous
strobe functionality.

SingleStrobe SingleStrobeController ()

• Returns a tracked handle to an instance of the single strobe controller, which provides access to the device's single-strobe
functionality.

ThermoElectric TECController ()

• Returns a tracked handle to an instance of the TEC controller, which provides access to the device's Thermoelectric Cooler
(TEC) functionality.

AnalogIn AnalogInController ()

• Returns a tracked handle to an instance of the analog in controller, which provides access to information about the device's
input pin voltage settings.

 MNL-1025 Rev A

 37

AnalogOut AnalogOutController ()

• Returns a tracked handle to an instance of the analog out controller, which provides access to information about the device's
output pin voltage settings.

IrradCalibrate IrradianceController ()

• Returns a tracked handle to an instance of the irradiance calibration controller, which provides access to the device's onboard
irradiance calibration.

EEPROM EepromController ()

• Returns a tracked handle to an instance of the EEPROM controller, which provides access to the device's onboard Electrically-
Erasable ReProgrammable Memory (EEPROM), which is used to store device-specific information in nonvolatile fashion.

Lamp LampController ()

• Returns a tracked handle to an instance of the lamp enable controller, which provides access to toggle the device's lamp
enable.

LedActivity LedActivityController ()

• Returns a tracked handle to an instance of the LED status controller, which provides access to the device's outside LED
control interface.

LightSource LightSourceController ()

• Returns a tracked handle to an instance of the light source controller, which provides access to the device's light-source
control interface.

 MNL-1025 Rev A

 38

SpectrumProcess SpectrumProcessingController ()

• Returns a tracked handle to an instance of the spectrum processing controller, which provides access to on-device averaging,
filtering, and triggering functionality.

Temperature TemperatureController ()

• Returns a tracked handle to an instance of the temperature controller, which provides access to the device's onboard
temperature sensors (but not its TEC, which, if applicable, is controlled via TECController())

DataBuffer DataBufferController ()

• Returns a tracked handle to an instance of the data buffer controller, which provides access to the device's onboard data
buffering functionality, which allows it to store spectral measurements onboard for later retrieval.

BackToBack BackToBackController ()

• Returns a tracked handle to an instance of the back-to-back scans controller, which provides access to the device's back-to-
back scan buffering functionality, which allows it to collect multiple scans immediately following one another (back-to-back)
for maximum acquisition rate.

OpticalBench OpticalBenchController ()

• Returns a tracked handle to an instance of the optical bench controller, which provides access to information about the
device's optical bench, such as its slit width.

AcquireDelay AcquireDelayController ()

• Returns a tracked handle to an instance of the acquisition delay controller, which provides access to information about the
device's acquisition delay settings, which govern the delay between the receipt of a trigger signal and the actual start of
integration.

file:///C:/Users/S&R/AppData/Local/Temp/Temp4_rtf.zip/rtf/NetOceanDirect_User_Manual.rtf%23AAAAAAAABD

 MNL-1025 Rev A

 39

RawBus RawBusController ()

• Returns a tracked handle to an instance of the raw BUS controller, which provides read/write access to the selected BUS port
used to communicate with the device.

NonLinearity NonLinearityController ()

• Returns a tracked handle to an instance of the nonlinearity correction controller, which provides access to the nonlinearity
correction model used to correct spectral measurements for detector nonlinearity.

Gpio GpioController ()

• Returns a tracked handle to an instance of the GPIO controller, which provides access to the device's General-Purpose
Input/Output pins.

Ipv4Address Ipv4Controller ()

• Returns a tracked handle to an instance of the IPv4 controller, which provides access to the device's IPv4 address
functionality.

AnalogIn

int getNumberOfVoltageDCInputs (long deviceID, int% errorCode)

• Gets the total number of voltage inputs that are supported by this feature.

double getMaximumInputVoltageDC (long deviceID, int% errorCode)

•

• Get the most positive voltage that can be sampled by the indicated input.

 MNL-1025 Rev A

 40

double getMinimumInputVoltageDC (long deviceID, int% errorCode)

• Get the most negative voltage that can be sampled by the indicated input.

double getVoltageDCInputVolts (long deviceID, int% errorCode, int input)

• Get the latest measured voltage from the given input. Assuming that there may be multiple inputs on the device, the index of
the input must be provided. These will start at zero and increase from there.

void configureAltPin (long deviceID, int% errorCode, int pinNumber, int pinType)

• Sets a particular pin to a particular usage type.

AnalogOut

int getNumberOfVoltageDCOutputs (long deviceID, int% errorCode)

• Gets the number of voltage controlled outputs available in this feature.

double getMaximumOutputVoltageDC (long deviceID, int% errorCode)

• Gets the most positive voltage that this feature can produce.

double getMinimumOutputVoltageDC (long deviceID, int% errorCode)

• Gets the most negative voltage that this feature can produce.

 MNL-1025 Rev A

 41

void setVoltageDCOutVolts (long deviceID, int% errorCode, int output, double voltage)

• Sets the voltage to be driven on the indicated output.

void configureAltPin (long deviceID, int% errorCode, int pinNumber, int pinType)

• Sets a particular pin to a particular usage type.

BackToBack

unsigned long getNumberOfBackToBackScans (long deviceID, int% errorCode)

• Retrieves the given device's current back-to-back-scans configuration.

void setNumberOfBackToBackScans (long deviceID, int% errorCode, unsigned long numScans)

• Sets the given device's back-to-back-scans configuration to the given value.

void setDefaultFactor2 (long deviceID, int% errorCode, const unsigned char binningFactor)

• Changes the default value for the given device's pixel binning factor setting to a new value. This new default will then be
applied each time the device powers on, or when setDefaultFactor() is called.

unsigned char getDefaultFactor (long deviceID, int% errorCode)

• Retrieves the given device's default pixel binning factor setting.

 MNL-1025 Rev A

 42

unsigned char getMaxFactor (long deviceID, int% errorCode)

• Retrieves the given device's maximum possible pixel binning factor setting.

ContinuousStrobe

unsigned long getContinuousStrobePeriodMicroseconds (long deviceID, int %errorCode)

• Gets the given device's continuous strobe period, which is the amount of time required for one complete strobe cycle (low
and high).

bool getContinuousStrobeEnable (long deviceID, int %errorCode)

• Determines if the continuous strobe is enabled or disabled.

unsigned long getContinuousStrobePeriodMinimumMicroseconds (long deviceID, int %errorCode)

• Gets the minimum continuous strobe period in microseconds.

unsigned long getContinuousStrobePeriodMaximumMicroseconds (long deviceID, int %errorCode)

• Gets the maximum continuous strobe period in microseconds.

unsigned long getContinuousStrobePeriodIncrementMicroseconds (long deviceID, int %errorCode)

• Retrieves the given device's continuous strobe period resolution in microseconds.

unsigned long getContinuousStrobeWidthMicroseconds (long deviceID, int %errorCode)

• Gets the continuous strobe width in microseconds.

 MNL-1025 Rev A

 43

void setContinuousStrobeEnable (long deviceID, int %errorCode, bool strobeEnable)

• Enables/disables the continuous strobe output of the given device.

void setContinuousStrobePeriodMicroseconds (long deviceID, int %errorCode, unsigned long strobePeriodMicroseconds)

• Sets the continuous strobe period in microseconds.

void setContinuousStrobeWidthMicroseconds (long deviceID, int %errorCode, unsigned long strobeWidthMicroseconds)

• Sets the continuous strobe width in microseconds.

DataBuffer

void clear (long deviceID, int% errorCode)

• Clears the given device's onboard data buffer by removing all buffered measurements. After this operation,
getNumberOfElements() will return 0.

unsigned long getNumberOfElements (long deviceID, int% errorCode)

• Retrieves the number of elements (spectra) currently present in the given device's onboard data buffer.

unsigned long getBufferCapacity (long deviceID, int% errorCode)

• Retrieves the given device's current onboard data buffer capacity, i.e., the maximum number of spectra it can store before the
buffer is filled.

 MNL-1025 Rev A

 44

unsigned long getBufferCapacityMaximum (long deviceID, int% errorCode)

• Retrieves the given device's maximum possible onboard data buffer capacity setting.

unsigned long getBufferCapacityMinimum (long deviceID, int% errorCode)

• Retrieves the given device's minimum possible onboard data buffer capacity setting.

void setBufferCapacity (long deviceID, int% errorCode, unsigned long capacity)

• Sets the given device's onboard data buffer capacity, which governs how many spectra it will store at once.

void setBufferEnable (long deviceID, int% errorCode, bool enabled)

• Enables/disables the data buffering feature of the given device.

bool getBufferEnable (long deviceID, int% errorCode)

• Checks to see whether data buffering is currently enabled on the given device.

DeviceRevision

string getRevisionHardware (long deviceID, int% errorCode)

• Retrieves the hardware revision of the given device or sets an error code if this is not available.

string int getRevisionFirmware (long deviceID, int% errorCode)

• Retrieves the firmware revision of the given device or sets an error code if this is not available.

 MNL-1025 Rev A

 45

Devices

Data Fields

• property int Id

• property String Name

• property bool InUse

• property BusType Btype
• property int SpectrumLen

Eeprom

array< unsigned char > readSlot (long deviceID, int% errorCode, int slotNumber, int bufferLength)

• Reads a specific slot from the given device's EEPROM and returns its contents in a new tracked array.

GPIO

int getNumberOfGPIO (long deviceID, int% errorCode)

• Retrieves the number of GPIO pins available on the given device

void setOutputEnable (long deviceID, int% errorCode, int bit, bool direction)

• Configures a specific GPIO pin as either an input or an output on a given device.

void setOutputEnable (long deviceID, int% errorCode, uint32_t bitmask)

• Configures the entire bank of GPIO pins as inputs or outputs using a bitmask.

 MNL-1025 Rev A

 46

bool getOutputEnable (long deviceID, int% errorCode, int bit)

• Retrieves the current direction (input vs. output) for a specific GPIO pin on the given device.

uint32_t getOutputEnable (long deviceID, int% errorCode)

• Retrieves the current direction of all GPIO pins on the given device.

void setValue (long deviceID, int% errorCode, int bit, bool value)

• Sets the value of a specific GPIO pins on the given device.

void setValue (long deviceID, int% errorCode, uint32_t bitmask)

• Sets the value of all GPIO pins on the given device.

bool getValue (long deviceID, int% errorCode, int bit)

• Retrieves the current logic level of a specific GPIO pin on the given device.

uint32_t getValue (long deviceID, int% errorCode)

• Retrieves the current logic level of all GPIO pins on the given device.

 MNL-1025 Rev A

 47

Ipv4

bool isDHCPEnabled (long deviceID, int% errorCode, unsigned char ifNum)

• Check to see if DHCP (client) is enabled on the specified interface. If DHCP is enabled then the device will be able to receive

and IP address from a DHCP server oin the network it is connected to.

void setDHCPEnable (long deviceID, int %errorCode, unsigned char ifNum, unsigned char enabled)

• Turn the DHCP client on or off for the device on the specified interface.

int getNumberOfIpAddresses (long deviceID, int% errorCode, unsigned char ifNum)

• Get the number of IP addresses available on the specified interface. If DHCP is enabled on the specified interface then index
0 represents the DHCP address and the following addresses will be any static IP addresses.

array< unsigned char > readIpAddress (long deviceID, int% errorCode, unsigned char ifNum, unsigned char addressIndex, unsigned
int% netmask)

• Retrieve the IP address and netmask on the specified interface. If DHCP is enabled on the specified interface then index 0
represents the DHCP address and the following addresses will be any static IP addresses. The IP address is returned as 4
bytes into a user supplied array. The leading part of the IP address will be in the first element of the array, followed by the
remaining parts in order to the last part of the IP address in the fourth element of the array.

void addStaticIpAddress (long deviceID, int% errorCode, unsigned char ifNum, array< unsigned char >^% ipAddress, unsigned int
netmask)

• Add a static IP address to the specified interface. The IP address is specified as 4 bytes in an array. The leading part of the IP
address must contain the first element of the array, followed by the remaining parts in order to the last part of the IP address
in the fourth element of the array.

 MNL-1025 Rev A

 48

void deleteStaticIpAddress (long deviceID, int% errorCode, unsigned char ifNum, unsigned char addressIndex)

• Delete a static IP address on the specified interface.

IrradCalibrate

array< double > read (long deviceID, int% errorCode, int bufferLength)

• Reads the given device's onboard irradiance calibration. The buffer length can be computed using the return values of
readCalibrationDataSize().

int readCalibrationDataSize (long deviceID, int% errorCode)

• Reads the given device's onboard irradiance calibration data count.

int write (long deviceID, int% errorCode, array< float >^ buffer, int bufferLength)

• Writes an irradiance calibration to the given device's onboard memory.

float readCollectionArea (long deviceID, int% errorCode)

• Retrieves the amount of area used to collect light for the given device.

void writeCollectionArea (long deviceID, int% errorCode, float area)

• Sets the amount of area used to collect light (as an abstract value used for irradiance calculations, not by actually changing
anything on the detector) for the given device.

 MNL-1025 Rev A

 49

Lamp

void Lamp::setEnable (long deviceID, int% errorCode, bool enable)

• Enables/disables the specified strobe lamp connected to the given device.

LedActivity

bool LedActivity::isEnabled (long deviceID, int% errorCode)

• Retrieves whether the LED activity light connected to the given device is currently enabled.

void LedActivity::setEnable (long deviceID, int% errorCode, bool enable)

• Enables/disables the specified light source connected to the given device.

LightSource

int getCount (long deviceID, int% errorCode)

• Gets the number of light sources that are connected to the given device. Such light sources could be individual LEDs, light
bulbs, lasers, etc. Each of these light sources may have different capabilities, such as programmable intensities and enable
controls, which should be queried before they are used.

bool hasEnable (long deviceID, int% errorCode, int lightSourceIndex)

• Queries whether the indicated light source connected to the given device has a usable enable/disable control. If this returns 0
(meaning no enable available) then calling isEnabled() or setEnable() will fail.

 MNL-1025 Rev A

 50

bool isEnabled (long deviceID, int% errorCode, int lightSourceIndex)

• Retrieves whether the specified light source connected to the given device is currently enabled. This function should not be
called if hasEnable() returns false for this light source.

void setEnable (long deviceID, int% errorCode, int lightSourceIndex, bool enable)

• Enables/disables the specified light source connected to the given device.

bool hasVariableIntensity (long deviceID, int% errorCode, int lightSourceIndex)

• Queries the given device to check whether the specified connected light source supports variable intensity.

double getIntensity (long deviceID, int% errorCode, int lightSourceIndex)

• Retrieves the current intensity setting of a light source connected to the given device. The light source specified must support
variable intensity for this to work. The intensity is normalized over the range [0, 1], with 0 as the minimum and 1 as the
maximum.

void setIntensity (long deviceID, int% errorCode, int lightSourceIndex, double intensity)

• Sets the intensity of a light source connected to the given device. The light source specified must support variable intensity
for this to work. The intensity is normalized over the range [0, 1], with 0 as the minimum and 1 as the maximum.

SAFETY WARNING: A light source at its minimum intensity (0) might still emit light, and in some cases, this light may be
harmful radiation. A value of 0 indicates the minimum of the programmable range for the light source, and does not
necessarily turn the light source off. To disable a light source completely, use setEnable() if the device supports this feature,
or provide some other mechanism to allow the light to be disabled or blocked by the operator.

In some cases, the intensity may refer to the duty cycle of a pulsed light source instead of a continuous power rating. The
actual power output of the light source might not vary linearly with the reported intensity, so independent measurement or
calibration of the light source may be necessary.

 MNL-1025 Rev A

 51

int setLampEnable (long deviceID, int% errorCode, bool state)

• Sets the strobe enable state of the given device.

NonLinearity

array< double > getCoeffs (long deviceID, int% errorCode, int length)

• Retrieve the nonlinearity correction coefficients from the given device

OceanDirect

OceanDirect ()

Advanced AdvancedFeatures ()

• Retrieves a tracked handle to an Advanced instance, which may be used to access advanced hardware features beyond what

is accessible from the OceanDirect class alone, such as trigger delay or raw USB access.

void openDevice (int deviceID, int% errorCode)

• Opens the spectrometer with the given device ID, which allows the various operations to be performed on it by passing this
same device ID. After being opened, the spectrometer will not be opened again until it is first closed using closeDevice().

void closeDevice (int deviceID, int% errorCode)

• Closes the spectrometer with the given ID, which cleans up associated resources and cached values and allows it to be
disconnected from the computer with no negative repurcussions. Only spectrometers that have already been opened using
openDevice() should be closed.

 MNL-1025 Rev A

 52

array< Devices^> findDevices ()

• Finds all available Ocean devices by scanning on USB for devices with Ocean drivers, finding devices that respond to UDP
multicast (FX and HDX), and returning IDs for any TCP-enabled devices that have been manually specified. Returns a list of
Devices objects corresponding to all of these devices, which contain some associated metadata, including their device IDs,
which may be used to refer to them using the other OceanDirect member functions (starting with openDevice()).

array< Devices^> getCurrentDevicesConnected ()

• Finds all available Ocean devices that are currently attached by scanning on USB for devices with Ocean drivers. Returns
information whether device is in use or not.

string getDeviceModel (long deviceID, int% errorCode)

• Retrieves the model name from the specified device.

double getApiVersion ()

• Retrieves the API version number for the Ocean Direct SDK.

bool isFeatureEnabled (int deviceID, NetOceanDirect::OceanDirect::FeatureID featureId, int% errorCode)

• Determine if a specified feature is supported by a spectrometer or not.

void applyElectricDarkCorrection(int deviceID, int% errorCode, bool apply)

• Sets whether electric dark correction is used.

 MNL-1025 Rev A

 53

bool getElectricDarkCorrectionUsage(int deviceID, int% errorCode)

• Gets electric dark correction useage from a device.

void applyNonLinearityCorrection(int deviceID, int% errorCode, bool apply)

• Sets whether nonlineaity correction is used.

bool getNonLinearityCorrectionUsage(int deviceID, int% errorCode)

• Gets nonlinearity correction usage from the given device.

void setIntegrationTimeMicros (int deviceID, int% errorCode, unsigned long integrationTimeMicros)

• Sets integration time for the given device, which is how long the detector collects photons before reading it out.

unsigned long getIntegrationTimeMicros (int deviceID, int% errorCode)

• Gets current integration time from the given device.

array< double > getWavelengths (int deviceID, int% errorCode)

• Gets wavelength at which each pixel on the device's detector reports intensity.

double getWavelength (int deviceID, int% errorCode, int pixel)

• Gets wavelength for a single pixel on the detector at the specified index.

array< double > getSpectrum (int deviceID, int% errorCode)

• Retrieves a spectral measurement in a manner depending on the device's current trigger mode.

 MNL-1025 Rev A

 54

array< SpectrumWithMetadata^> getRawSpectrumWithMetadata (int deviceID, int% errorCode)

• Retrieves raw spectrum with timestamp. To use this function, the data buffer must be enabled and the back-to-back spectra
acquisition count must be set.

int getNumberOfPixels (int deviceID, int% errorCode)

• Gets the number of pixels on the detector, which matches the length of spectra returned by getSpectrum or wavelengths
returned by getWavelengths(). Depends on device and current pixel binning mode, if applicable. Does not actually
communicate with the device, since this value is read during openDevice() and cached in OceanDirect.Pixels (int deviceID,

int% errorCode).

int getIndexAtWavelength (long deviceID, int% errorCode, double% wavelength, double aproxWavelength)

• Determines the pixel index on the given device that measures light at a wavelength closest to the given query wavelength.
Does not communicate with the device - uses cached wavelengths.

array< int > getIndicesAtAnyWavelength (long deviceID, int% errorCode, array< double >^% wavelength, int length)

• As getIndexAtWavelength, but looks up multiple query wavelengths and returns an index for each.

array< int > getIndicesAtWavelengthRange (long deviceID, int% errorCode, array< double >^% wavelength,, double lo, double hi)

• Retrieves the indices and wavelengths of pixels that measure light at wavelengths within the given spectral range.

int getEDPCount (int deviceID, int% errorCode)

• Retrieves the number of electric dark pixels on the detector of the given device. Electric dark pixels are optically masked so
that they receive no light. Does not communicate with the device - uses cached values.

 MNL-1025 Rev A

 55

array< int > getEDPIndices (int deviceID, int% errorCode, int length)

• Retrieves the indices of electric dark pixels on the detector of the given device. Electric dark pixels are optically masked so
that they receive no light. Does not communicate with the device - uses cached values.

double getMaximumIntensity (int deviceID, int% errorCode)

• Returns the greatest intensity value that could possibly be reported at any pixel by the given device (i.e., by getSpectrum()).
Does not communicate with the device - uses cached values.

unsigned long getMinimumIntegrationTime (int deviceID, int% errorCode)

• Returns the minimum allowed integration time for the given device. Trying to set the device's integration time to a value below
this minimum will result in setIntegrationTimeMicros() silently clamping the given time to this minimum value. Does not
communicate with the device - uses cached values.

unsigned long getMaximumIntegrationTime (int deviceID, int% errorCode)

• Returns the maximum allowed integration time for the given device. Trying to set the device's integration time to a value
above this maximum will result in setIntegrationTimeMicros() silently clamping the given time to this maximum value. Does
not communicate with the device - uses cached values.

string getSerialNumber (long deviceID, int% errorCode)

• Retrieves the serial number of the spectrometer.

OpticalBench

string getArrayWavelength(long deviceID, int% errorCode)

• Retrieves the optical array wavelength from a given device.

 MNL-1025 Rev A

 56

string getSlitWidthMicrons (long deviceID, int% errorCode)

• Retrieves the slit width from a given device.

string getSerialNumber (long deviceID, int% errorCode)

• Retrieves the optical bench serial (detector) number from a given device.

string getCoating (long deviceID, int% errorCode)

• Retrieves the name of the optical bench coating from a given device.

string getFilter (long deviceID, int% errorCode)

• Retrieves the name of the optical bench filter from a given device.

string getGrating (long deviceID, int% errorCode)

• Retrieves the name of the optical bench diffraction grating from a given device.

string getLensInstalled (long deviceID, int% errorCode)

• Retrieves whether a lens is installed for a given device.

string getSerialNumber (long deviceID, int% errorCode)

• Retrieves the optical bench detector serial number from a given device.

 MNL-1025 Rev A

 57

RawBus

array< unsigned char > accessUsbRead (long deviceID, int% errorCode, int bufferLength, unsigned char endpoint)

• Reads data directly from the USB endpoint through which the given device is attached.

int accessUsbWrite (long deviceID, int% errorCode, array< unsigned char >^% buffer, int bufferLength, unsigned char endpoint)

• Writes data directly to the USB endpoint through which the given device is attached.

array< unsigned char > accessEthRead (long deviceID, int% errorCode, int bufferLength)

• Reads data from the specified device over Ethernet

int accessEthWrite (long deviceID, int% errorCode, array< unsigned char >^% buffer, int bufferLength)

• Writes data to the specified device over Ethernet.

String getStringDescriptor (long deviceID, int% errorCode, int index)

• Reads the USB device descriptor reported by the given device.

SingleStrobe

void setStrobeEnable (long deviceID, int% errorCode, bool strobeEnable)

• Sets the enable status of the single strobe signal. Note that on some devices the enable control is shared with other signals
(e.g., lamp enable and continuous strobe) so this may have some side-effects and changing those features may affect the
single strobe as well.

 MNL-1025 Rev A

 58

void setStrobeDelay (long deviceID, int% errorCode, unsigned long microseconds)

• Sets the amount of time, in microseconds, that should elapse after starting an event before the single strobe should have a
rising edge.

void setStrobeWidth (long deviceID, int% errorCode, unsigned long microseconds)

• Sets the amount of time, in microseconds, that the single strobe pulse should remain high after it begins.

bool getStrobeEnable (long deviceID, int% errorCode)

• Retrieves the given device's current strobe enable state.

unsigned long getStrobeDelay (long deviceID, int% errorCode)

• Retrieves the given device's current single strobe delay.

unsigned long getStrobeWidth (long deviceID, int% errorCode)

• Retrieves the given device's current single strobe pulse width.

unsigned long getStrobeMinimumDelay (long deviceID, int% errorCode)

• Retrieves the given device's minimum allowed single strobe delay.

unsigned long getStrobeMaximumDelay (long deviceID, int% errorCode)

• Retrieves the given device's maximum allowed single strobe delay.

 MNL-1025 Rev A

 59

unsigned long getStrobeMinimumWidth (long deviceID, int% errorCode)

• Retrieves the given device's minimum allowed single strobe pulse width.

unsigned long getStrobeMaximumWidth (long deviceID, int% errorCode)

• Retrieves the given device's maximum allowed single strobe pulse width.

unsigned long getStrobeMaximumCycle (long deviceID, int% errorCode)

• Retrieves the given device's maximum amount of time that the entire single strobe pulse can take. The sum of the pulse delay
and width must never exceed this value. This is effectively the largest delay between the epoch and the falling edge that is
allowed.

unsigned long getStrobeIncrementDelay (long deviceID, int% errorCode)

• Retrieves the given device's single strobe delay increment value.

unsigned long getStrobeIncrementWidth (long deviceID, int% errorCode)

• Retrieves the given device's single strobe pulse width increment value.

SpectrumProcess

unsigned char getBoxcarWidth (long deviceID, int% errorCode)

• Retrieves the given device's current boxcar filter width setting.

 MNL-1025 Rev A

 60

unsigned short int getScansToAverage (long deviceID, int% errorCode)

• Retrieves the given device's current onboard averaging setting.

void setBoxcarWidth (long deviceID, int% errorCode, unsigned char boxcarWidth)

• Sets the given device's onboard boxcar filter width.

void setScansToAverage (long deviceID, int% errorCode, unsigned short int scansToAverage)

• Sets the number of scans to be averaged per measurement for a given device.

void setTriggerMode (long deviceID, int% errorCode, int mode)

• Sets the device's trigger mode.

SpectrumWithMetadata

SpectrumWithMetadata (const oceandirect::SpectrumWithMetadata &nativeData)

• Wrapper class to contain raw spectrum with timestamp. This class may return 0 to 15 spectra with timestamps depending on
what has accumulated in the data buffer of the spectrometer. In the .NET environment, the function returns a class with
“properties” for the spectrum and timestamp.

 MNL-1025 Rev A

 61

Temperature

int getCount (long deviceID, int% errorCode)

• Retrieves the number of temperature sensors available on the given device.

double getTemperature (long deviceID, int% errorCode, int index)

• Retrieves the current temperature as reported by the specified temperature sensor on the given device.

ThermoElectric

double readTemperatureDegreesC (long deviceID, int% errorCode)

• Reads the current temperature of the thermoelectric cooler (TEC) on a given device (not the setpoint).

void setTemperatureSetpointDegreesC (long deviceID, int% errorCode, double temperatureDegreesCelsius)

• Sets the thermoelectric cooler (TEC) setpoint on the given device, which is the target temperature it will try to reach.

void setEnable (long deviceID, int% errorCode, unsigned char tecEnable)

• Enables/disables the thermoelectric cooler (TEC) on the given device.

bool getEnable (long deviceID, int% errorCode)

• Returns true if the thermoelectric cooler (TEC) on a given device has been enabled.

float getSetpoint (long deviceID, int% errorCode)

 MNL-1025 Rev A

 62

• Reads the setpoint temperature of the Thermoelectric Cooler (TEC) on a given device.

bool getStable (long deviceID, int% errorCode)

• Returns true if the thermoelectric cooler (TEC) on a given device has reached the the setpoint temperature and is not
changing.

bool getFanEnable (long deviceID, int% errorCode)

• Returns true if the thermoelectric cooler (TEC) fan on a given device has been enabled.

void setFanEnable (long deviceID, int% errorCode, bool fanEnable)

• Enables/disables the thermoelectric cooler (TEC) fan on the given device.

 MNL-1025 Rev A

 63

Appendix B - Error Codes
The following are error codes that may be returned from a function call.

Error
Code

Description
Error
Code

Description

0 Successful/no error 16 Empty Vector (Check Input Parameter)

1 Undefined error 17 Color Conversion Error (Check Values)

2 No device found 18 No Peak Found Error (Input Spectrum Has No Peaks)

3 Could not close device 19 Illegal State Error (Unexpected State)

4 Feature not implemented 20 Minimum Integration Time Reached (Lamp is too
bright)

5 No such feature on device 21 Maximum Integration Time Reached (Lamp is too
dim)

6 Data transfer error 22 Please ensure that your lamp is on

7 Invalid user buffer provided 23 Not enough buffer space

8 Input was out of bounds 24 Command not supported by device

9 Spectrometer was saturated 25 Trial license expired

10 Value not found 26 No valid license

11 Divide By Zero Error (Cannot Divide by Zero) 27 License not checked

12 Non-Invertible Matrix Error (Matrix Has No Inverse) 28 Full license exceeded

13 Array Length Error (Array Lengths Don't Match) 29 Trial expired

14 Array Index Out of Bounds (Check Your Array Length?
Is it Zero?)

30 Perpetual license version mismatch

15 Invalid Argument (Check Input Parameter)

 MNL-1025 Rev A

 64

Appendix C - Improving Performance
Windows is not a real-time operating system and cannot guarantee a level of responsiveness. But there are a few things you can do
to improve the performance of your application.

• You can increase the priority of the thread in which getSpectrum() is called. However, this only affects the priority of that
thread WITHIN your application, and not relative to OTHER applications running on Windows. Often the problem is that some
other application (or Windows service) is performing activity that interferes with the speed of your application. Try setting the
priority of your OceanDirect application to "RealTime." To do this:

1. Type control+alt+delete to bring up the Windows Task Manager.
2. Select the Processes tab.
3. Right-click on your OceanDirect application and choose Set Priority | RealTime.

• Determine what applications and services are running on your PC and shut down all unnecessary applications. If you have a
backup utility such as Carbonite, you should pause it. Check your anti-virus application to see if it is configured in some way
that might result in bursts of disk I/O.

• If bursts of disk I/O are interfering with your application, there is a good chance this disk I/O is due to "page faults". Page
faults occur when Windows does not have enough RAM/memory to run all of the applications that are currently active. So
Windows “borrows” some disk space to "simulate" additional RAM. If this causes your OceanDirect application a problem,
then the solution is to either shut down as many applications as possible, or to install additional RAM.

• Try running your application on another PC that has nothing else installed.

 MNL-1025 Rev A

 65

Appendix D - FAQs
How fast can I acquire spectra?
The speed at which you can acquire spectra depends on the following factors:

• Minimum integration time.

• Communication speed of the USB connection. Most PCs use USB 3.0, but some may still be using USB 2.0, which is much
slower.

• Number of pixels of data. Some detectors return as few as 256 pixels of data, others may return up to 4096 pixels. Each pixel
is transmitted as a 2-byte integer. The greater the number of pixels, the longer it takes to transmit the data.

• Speed of your PC.

• The number of spectrometers operating in parallel.

Consider each of these factors carefully when estimating the maximum rate at which you can acquire spectra on your PC. It is
always best to perform actual real-world measurements.

Why doesn’t getSpectrum() return when I think it should?
When you set the integration time for a spectrometer, and then call getSpectrum(), you might expect that the duration of the call to
getSpectrum() would match the integration time exactly. This is rarely the case, and there are several reasons why:

• When you first power up the spectrometer by plugging it in to your PC, the spectrometer immediately begins acquiring spectra
using default settings for integration time and other acquisition parameters. This is called Normal mode. As long as the
spectrometer remains in Normal mode, and remains plugged in to your PC, it will continuously acquire spectra.

When your application calls getSpectrum(), the spectrometer may be just beginning to acquire a new spectrum, or it may
be nearly finished acquiring a spectrum, or it may be anywhere in between these two extremes. As a consequence,
getSpectrum() may return almost immediately, or it may not return until the full integration period has elapsed; it just
depends on how far along the spectrometer happened to be in its acquisition process at the moment you called
getSpectrum().

If your application calls getSpectrum() repeatedly (in a tight loop), the duration of subsequent calls to getSpectrum() will
exactly match the integration time. This is because once you have called getSpectrum(), you are effectively synchronized
with the operation of the spectrometer. Your first call to getSpectrum() will return at the exact moment that the

 MNL-1025 Rev A

 66

spectrometer has completed a spectrum acquisition. Your second call to getSpectrum() occurs just as the spectrometer is
beginning the next spectrum acquisition. Thus, your second (and all subsequent) calls to getSpectrum() must wait for the
full integration period to elapse before the spectrometer has finished acquiring the next spectrum.

• There is a second reason why the duration of the getSpectrum() method may not match the integration time setting.
Whenever you change one of the acquisition parameters that can affect the spectrum data (e.g., changing the integration
time), OceanDirect will automatically take a stability scan. This means OceanDirect will ignore the spectrum that was being
acquired at the moment when you called getSpectrum(). This spectrum was acquired using previous settings for the
acquisition parameters, and thus is invalid. OceanDirect will return the following spectrum, which is based on the new
acquisition parameter settings.

If I change spectrometer models, do I need to change my program?
No. As long as you stay within the Wrapper API, your software does not need to be modified when you change to a different type of
Ocean Insight spectrometer.

However, keep in mind that certain features (e.g., “thermoelectric cooling”) are only available on selected spectrometers.

What happens if the timeout period is shorter than the integration time?
Some of the calls to getSpectrum() will time out, and some will return valid spectra. The ratio of valid spectra to timeouts will
depend on the ratio of your timeout period to the integration time. However, this situation should not cause you to miss spectral
acquisitions, unless the integration time is so short your program cannot call getSpectrum() soon enough to capture the next
spectrum.

What happens in the following scenario?
1. Set spectrometer to one of the external trigger modes
2. Call getSpectrum()
3. Timeout occurs before the trigger occurs
4. Trigger event happens before you call getSpectrum() a second time
5. Call getSpectrum()

 MNL-1025 Rev A

 67

The second call to getSpectrum() will return immediately with the spectrum that was acquired when the trigger event occurred.

If multiple trigger events happen after the first getSpectrum() has timed-out and before you call getSpectrum() a second time, when
you do call getSpectrum() the second time, it immediately returns with the spectrum from the FIRST trigger event. Data from any
additional trigger events during this window will be lost.

If a timeout occurs before the spectrum can be acquired, the spectral array returned by getSpectrum() will contain all zeroes.

How do I use Ethernet to send commands to my spectrometer?
The OceanDirect commands can be executed through an Ethernet interface on Ocean FX and Ocean HDX spectrometers. First,
however, the spectrometer must be configured using the USB connection to obtain the IP address. Please refer to the Ocean FX or
Ocean HDX User Manuals Setup and Installation section to obtain the IP address.

Questions?
Chat with us at OceanInsight.com.
info@oceaninsight.com • US +1 727-733-2447
EUROPE +31 26-3190500 • ASIA +86 21-6295-6600

http://www.oceaninsight.com/

